Building a Simple Blog Post Summarizer with Gemini AI in Java

A step-by-step guide to integrating Google's Gemini Pro into a Java application to automatically summarize blog posts.

Posted by Prateep Gedupudi on July 26, 2025

In the age of information overload, it’s becoming increasingly difficult to keep up with the latest content. Blog posts, in particular, can be lengthy and time-consuming to read. What if you could automatically generate a concise summary of any blog post? In this tutorial, we’ll do just that by building a simple blog post summarizer using Java and the powerful Gemini AI.

We’ll walk through the process of setting up a Java project, obtaining a Gemini API key, and writing the code to interact with the Gemini API to generate summaries.

Prerequisites

Before we begin, make sure you have the following installed:

  • Java Development Kit (JDK): Version 8 or higher.
  • Maven: For managing project dependencies.
  • A Google Account: To get a Gemini API key.

1. Get Your Gemini API Key

To use the Gemini API, you’ll need an API key. You can obtain one for free from Google’s AI for Developers website.

  1. Go to https://ai.google.dev/.
  2. Click on “Get API key in Google AI Studio”.
  3. Sign in with your Google account.
  4. Create a new API key.
  5. Copy the API key and save it somewhere safe. We’ll need it later.

2. Set Up Your Java Project

First, let’s create a new Maven project. You can do this from your favorite IDE or by using the command line:

mvn archetype:generate -DgroupId=com.example -DartifactId=gemini-summarizer -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Next, open the pom.xml file and add the following dependency for the Gemini API Java client:

<dependencies>
    <dependency>
        <groupId>com.google.cloud</groupId>
        <artifactId>google-cloud-vertexai</artifactId>
        <version>2.3.0</version>
    </dependency>
</dependencies>

3. Write the Summarizer Code

Now, let’s write the Java code to summarize a blog post. Create a new Java class called BlogSummarizer.java in the src/main/java/com/example directory and add the following code:

package com.example;

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;

import java.io.IOException;

public class BlogSummarizer {

    public static void main(String[] args) throws IOException {
        String projectId = "your-gcp-project-id"; // Replace with your GCP project ID
        String location = "us-central1";      // Replace with your GCP project location
        String modelName = "gemini-1.5-flash-001";   // Or "gemini-1.0-pro"

        String blogPostText = "Your lengthy blog post text goes here..."; // Replace with the blog post content

        String summary = summarizeText(projectId, location, modelName, blogPostText);
        System.out.println("Summary:\n" + summary);
    }

    public static String summarizeText(String projectId, String location, String modelName, String text) throws IOException {
        try (VertexAI vertexAI = new VertexAI(projectId, location)) {
            GenerativeModel model = new GenerativeModel(modelName, vertexAI);
            GenerateContentResponse response = model.generateContent("Summarize the following blog post:\n\n" + text);
            return ResponseHandler.getText(response);
        }
    }
}

Important:

  • Replace "your-gcp-project-id" with your actual Google Cloud Platform project ID.
  • Replace "Your lengthy blog post text goes here..." with the content of the blog post you want to summarize.
  • You’ll need to set up authentication for the Vertex AI API. The easiest way to do this for local development is to use the Google Cloud CLI:
    1. Install the Google Cloud CLI.
    2. Run gcloud auth application-default login.

4. Run the Summarizer

Now you can run the BlogSummarizer class. It will send the blog post text to the Gemini API and print the summary to the console.

Conclusion

In this tutorial, we’ve seen how easy it is to integrate the Gemini AI into a Java application to perform powerful tasks like text summarization. You can extend this example to build more complex applications, such as a web service that summarizes articles from a URL, or a tool that automatically generates summaries for your own blog. The possibilities are endless!

```